کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612016 1338653 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The 16th Hilbert problem on algebraic limit cycles
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The 16th Hilbert problem on algebraic limit cycles
چکیده انگلیسی

For real planar polynomial differential systems there appeared a simple version of the 16th Hilbert problem on algebraic limit cycles: Is there an upper bound on the number of algebraic limit cycles of all polynomial vector fields of degree m? In [J. Llibre, R. Ramírez, N. Sadovskaia, On the 16th Hilbert problem for algebraic limit cycles, J. Differential Equations 248 (2010) 1401–1409] Llibre, Ramírez and Sadovskaia solved the problem, providing an exact upper bound, in the case of invariant algebraic curves generic for the vector fields, and they posed the following conjecture: Is 1+(m−1)(m−2)/2 the maximal number of algebraic limit cycles that a polynomial vector field of degree m can have?In this paper we will prove this conjecture for planar polynomial vector fields having only nodal invariant algebraic curves. This result includes the Llibre et al.ʼs as a special one. For the polynomial vector fields having only non-dicritical invariant algebraic curves we answer the simple version of the 16th Hilbert problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 251, Issue 7, 1 October 2011, Pages 1778-1789