کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4612184 | 1338665 | 2010 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Global solutions and blow-up phenomena to a shallow water equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A nonlinear shallow water equation, which includes the famous Camassa–Holm (CH) and Degasperis–Procesi (DP) equations as special cases, is investigated. The local well-posedness of solutions for the nonlinear equation in the Sobolev space Hs(R) with is developed. Provided that does not change sign, u0∈Hs () and u0∈L1(R), the existence and uniqueness of the global solutions to the equation are shown to be true in u(t,x)∈C([0,∞);Hs(R))∩C1([0,∞);Hs−1(R)). Conditions that lead to the development of singularities in finite time for the solutions are also acquired.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 249, Issue 3, 1 August 2010, Pages 693-706
Journal: Journal of Differential Equations - Volume 249, Issue 3, 1 August 2010, Pages 693-706