کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4612229 | 1338669 | 2007 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Principal eigenvalue of a very badly degenerate operator and applications
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we define and investigate the properties of the principal eigenvalue of the singular infinity Laplace operatorÎâu=(D2uDu|Du|)â
Du|Du|. This operator arises from the optimal Lipschitz extension problem and it plays the same fundamental role in the calculus of variations of Lâ functionals as the usual Laplacian does in the calculus of variations of L2 functionals. Our approach to the eigenvalue problem is based on the maximum principle and follows the outline of the celebrated work of Berestycki, Nirenberg and Varadhan [H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1) (1994) 47-92] in the case of uniformly elliptic linear operators. As an application, we obtain existence and uniqueness results for certain related non-homogeneous problems and decay estimates for the solutions of the evolution problem associated to the infinity Laplacian.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 236, Issue 2, 15 May 2007, Pages 532-550
Journal: Journal of Differential Equations - Volume 236, Issue 2, 15 May 2007, Pages 532-550
نویسندگان
Petri Juutinen,