کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612279 1338672 2011 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strichartz type estimates and the well-posedness of an energy critical 2D wave equation in a bounded domain
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Strichartz type estimates and the well-posedness of an energy critical 2D wave equation in a bounded domain
چکیده انگلیسی

We study the well-posedness of the Cauchy problem with Dirichlet or Neumann boundary conditions associated to an H1-critical semilinear wave equation on a smooth bounded domain Ω⊂R2. First, we prove an appropriate Strichartz type estimate using the Lq spectral projector estimates of the Laplace operator. Our proof follows Burq, Lebeau and Planchon (2008) [4]. Then, we show the global well-posedness when the energy is below or at the threshold given by the sharp Moser–Trudinger inequality. Finally, in the supercritical case, we prove an instability result using the finite speed of propagation and a quantitative study of the associated ODE with oscillatory data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 250, Issue 9, 1 May 2011, Pages 3740-3771