کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612289 1338673 2007 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global conservative solutions of the generalized hyperelastic-rod wave equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Global conservative solutions of the generalized hyperelastic-rod wave equation
چکیده انگلیسی

We prove existence of global and conservative solutions of the Cauchy problem for the nonlinear partial differential equation where f is strictly convex or concave and g is locally uniformly Lipschitz. This includes the Camassa–Holm equation (f(u)=u2/2 and g(u)=κu+u2) as well as the hyperelastic-rod wave equation (f(u)=γu2/2 and g(u)=(3−γ)u2/2) as special cases. It is shown that the problem is well-posed for initial data in H1(R) if one includes a Radon measure that corresponds to the energy of the system with the initial data. The solution is energy preserving. Stability is proved both with respect to initial data and the functions f and g. The proof uses an equivalent reformulation of the equation in terms of Lagrangian coordinates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 233, Issue 2, 15 February 2007, Pages 448-484