کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612295 1338673 2007 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-autonomous perturbation of autonomous semilinear differential equations: Continuity of local stable and unstable manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Non-autonomous perturbation of autonomous semilinear differential equations: Continuity of local stable and unstable manifolds
چکیده انگلیسی

In this paper we prove a result on lower semicontinuity of pullback attractors for dynamical systems given by semilinear differential equations in a Banach space. The situation considered is such that the perturbed dynamical system is non-autonomous whereas the limiting dynamical system is autonomous and has an attractor given as union of unstable manifold of hyperbolic equilibrium points. Starting with a semilinear autonomous equation with a hyperbolic equilibrium solution and introducing a very small non-autonomous perturbation we prove the existence of a hyperbolic global solution for the perturbed equation near this equilibrium. Then we prove that the local unstable and stable manifolds associated to them are given as graphs (roughness of dichotomy plays a fundamental role here). Moreover, we prove the continuity of this local unstable and stable manifolds with respect to the perturbation. With that result we conclude the lower semicontinuity of pullback attractors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 233, Issue 2, 15 February 2007, Pages 622-653