کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612378 1338681 2007 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic behavior of a nonisothermal viscous Cahn–Hilliard equation with inertial term
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Asymptotic behavior of a nonisothermal viscous Cahn–Hilliard equation with inertial term
چکیده انگلیسی

We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn–Hilliard equation characterized by the presence of an inertial term χtt, χ being the order parameter, which is linearly coupled with an evolution equation for the (relative) temperature ϑ. The latter can be of hyperbolic type if the Cattaneo–Maxwell heat conduction law is assumed. The state variables and the chemical potential are subject to the homogeneous Neumann boundary conditions. We first provide conditions which ensure the well-posedness of the initial and boundary value problem. Then, we prove that the corresponding dynamical system is dissipative and possesses a global attractor. Moreover, assuming that the nonlinear potential is real analytic, we establish that each trajectory converges to a single steady state by using a suitable version of the Łojasiewicz–Simon inequality. We also obtain an estimate of the decay rate to equilibrium.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 239, Issue 1, 1 August 2007, Pages 38-60