کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4612454 | 1338687 | 2006 | 34 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Global existence and asymptotic behavior for a multidimensional nonisentropic hydrodynamic semiconductor model with the heat source
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a multidimensional nonisentropic hydrodynamic model for semiconductors with the nonconstant lattice temperature is studied. The model is self-consistent in the sense that the electric field, which forms a forcing term in the momentum equation, is determined by the coupled Poisson equation. Global existence to the Cauchy problem for the multidimensional nonisentropic hydrodynamic semiconductor model with the small perturbed initial data is established, and the asymptotic behavior of these smooth solutions is investigated, namely, that the solutions converge to the general steady-state solution exponentially fast as t→+∞ is obtained. Moreover, the existence and uniqueness of the stationary solutions are investigated.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 225, Issue 1, 1 June 2006, Pages 134-167
Journal: Journal of Differential Equations - Volume 225, Issue 1, 1 June 2006, Pages 134-167