کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612553 1338694 2009 43 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Low-regularity bilinear estimates for a quadratic nonlinear Schrödinger equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Low-regularity bilinear estimates for a quadratic nonlinear Schrödinger equation
چکیده انگلیسی

In this article we establish the bilinear estimates corresponding to the 1D and 2D NLS with a quadratic nonlinearity , which imply the local well-posedness of the Cauchy problem in Hs for s⩾−1 in the 1D case and for s>−1 in the 2D case. This is a continuation of our study [N. Kishimoto, Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity , Commun. Pure Appl. Anal. 7 (2008) 1123–1143] on the 1D NLS with nonlinearity . Previous papers by Kenig, Ponce and Vega, and Colliander, Delort, Kenig and Staffilani established local well-posedness for s>−3/4 in 1D and in 2D, respectively, and when the nonlinearity is restricted to cu2, papers by Bejenaru and Tao, and Bejenaru and De Silva improved these results to s⩾−1 in 1D and s>−1 in 2D. The bilinear estimate for 2D also yields an improvement on the growth rate of Sobolev norms of finite energy global-in-time solutions to the 2D cubic NLS.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 247, Issue 5, 1 September 2009, Pages 1397-1439