کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612554 1338694 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The global Cauchy problem for a vibrating beam equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The global Cauchy problem for a vibrating beam equation
چکیده انگلیسی

We consider the global Cauchy problem for an evolution equation which models an Euler–Bernoulli vibrating beam with time dependent elastic modulus under a force linear function of the displacement u, of the slope ∂xu, of and . These two last derivatives are proportional to the bending moment and to the shear respectively. We show results of well-posedness in Sobolev spaces assuming that the coefficient of the shear term has a decay rate |x|−σ, σ⩾1, for the position x→±∞ and that all the coefficients of , 1⩽k⩽3, satisfy suitable Levi conditions since we allow the elastic modulus to vanish at some time t=t0.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 247, Issue 5, 1 September 2009, Pages 1440-1451