کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612575 1338695 2007 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectral theory for general nonautonomous/random dispersal evolution operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Spectral theory for general nonautonomous/random dispersal evolution operators
چکیده انگلیسی

We investigate the spectral theory of the following general nonautonomous evolution equation∂tu(t,x)=A(u(t,⋅))(x)+h(t,x)u(t,x),x∈D, where D   is a bounded subset of RNRN which can be a smooth domain or a discrete set, AA is a general linear dispersal operator (for example a Laplacian operator, an integral operator with positive kernel or a cooperative discrete operator) and h(t,x)h(t,x) is a smooth function on R×D¯. We first study the influence of time dependence on the principal spectrum of dispersal equations and show that the principal Lyapunov exponent of a time-dependent dispersal equation is always greater than or equal to that of the time-averaged one. Several results about the principal eigenvalue of time-periodic parabolic equations are extended to general time-periodic dispersal ones. Finally, the investigation is generalized to random time-dependent dispersal equations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 235, Issue 1, 1 April 2007, Pages 262–297
نویسندگان
, ,