کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4612586 | 1338696 | 2010 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier–Stokes equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we study the zero dissipation limit problem for the one-dimensional compressible Navier–Stokes equations. We prove that if the solution of the inviscid Euler equations is piecewise constants with a contact discontinuity, then there exist smooth solutions to the Navier–Stokes equations which converge to the inviscid solution away from the contact discontinuity at a rate of as the heat-conductivity coefficient κ tends to zero, provided that the viscosity μ is of higher order than the heat-conductivity κ. Without loss of generality, we set μ≡0. Here we have no need to restrict the strength of the contact discontinuity to be small.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 248, Issue 1, 1 January 2010, Pages 95-110
Journal: Journal of Differential Equations - Volume 248, Issue 1, 1 January 2010, Pages 95-110