کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612586 1338696 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier–Stokes equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier–Stokes equations
چکیده انگلیسی

In this paper, we study the zero dissipation limit problem for the one-dimensional compressible Navier–Stokes equations. We prove that if the solution of the inviscid Euler equations is piecewise constants with a contact discontinuity, then there exist smooth solutions to the Navier–Stokes equations which converge to the inviscid solution away from the contact discontinuity at a rate of as the heat-conductivity coefficient κ tends to zero, provided that the viscosity μ is of higher order than the heat-conductivity κ. Without loss of generality, we set μ≡0. Here we have no need to restrict the strength of the contact discontinuity to be small.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 248, Issue 1, 1 January 2010, Pages 95-110