کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612590 1338696 2010 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A singularly perturbed semilinear reaction–diffusion problem in a polygonal domain
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
A singularly perturbed semilinear reaction–diffusion problem in a polygonal domain
چکیده انگلیسی

The semilinear reaction–diffusion equation −ε2Δu+b(x,u)=0 with Dirichlet boundary conditions is considered in a convex polygonal domain. The singular perturbation parameter ε is arbitrarily small, and the “reduced equation” b(x,u0(x))=0 may have multiple solutions. An asymptotic expansion for u is constructed that involves boundary and corner layer functions. By perturbing this asymptotic expansion, we obtain certain sub- and super-solutions and thus show the existence of a solution u that is close to the constructed asymptotic expansion. The polygonal boundary forces the study of the nonlinear autonomous elliptic equation −Δz+f(z)=0 posed in an infinite sector, and then well-posedness of the corresponding linearized problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 248, Issue 1, 1 January 2010, Pages 184-208