کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612608 1338698 2009 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global solvability for first order real linear partial differential operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Global solvability for first order real linear partial differential operators
چکیده انگلیسی

F. Treves, in [17], using a notion of convexity of sets with respect to operators due to B. Malgrange and a theorem of C. Harvey, characterized globally solvable linear partial differential operators on C∞(X), for an open subset X of Rn.Let P=L+c be a linear partial differential operator with real coefficients on a C∞ manifold X, where L is a vector field and c is a function. If L has no critical points, J. Duistermaat and L. Hörmander, in [2], proved five equivalent conditions for global solvability of P on C∞(X).Based on Harvey–Treves's result we prove sufficient conditions for the global solvability of P on C∞(X), in the spirit of geometrical Duistermaat–Hörmander's characterizations, when L is zero at precisely one point. For this case, additional non-resonance type conditions on the value of c at the equilibrium point are necessary.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 247, Issue 10, 15 November 2009, Pages 2688-2704