کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612611 1338698 2009 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence of Galerkin solutions and continuous dependence on data in spectrally-hyperviscous models of 3D turbulent flow
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Convergence of Galerkin solutions and continuous dependence on data in spectrally-hyperviscous models of 3D turbulent flow
چکیده انگلیسی

We obtain results on the convergence of Galerkin solutions and continuous dependence on data for the spectrally-hyperviscous Navier–Stokes equations. Let uN denote the Galerkin approximates to the solution u, and let wN=u−uN. Then our main result uses the decomposition wN=PnwN+QnwN where (for fixed n) Pn is the projection onto the first n eigenspaces of A=−Δ and Qn=I−Pn. For assumptions on n that compare well with those in related previous results, the convergence of ‖QnwN(t)‖Hβ as N→∞ depends linearly on key parameters (and on negative powers of λn), thus reflective of Kolmogorov-theory predictions that in high wavenumber modes viscous (i.e. linear) effects dominate. Meanwhile ‖PnwN(t)‖Hβ satisfies a more standard exponential estimate, with positive, but fractional, dependence on λn. Modifications of these estimates demonstrate continuous dependence on data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 247, Issue 10, 15 November 2009, Pages 2778-2798