کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612626 1338699 2009 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Riemann problem for the Leray–Burgers equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
The Riemann problem for the Leray–Burgers equation
چکیده انگلیسی

For Riemann data consisting of a single decreasing jump, we find that the Leray regularization captures the correct shock solution of the inviscid Burgers equation. However, for Riemann data consisting of a single increasing jump, the Leray regularization captures an unphysical shock. This behavior can be remedied by considering the behavior of the Leray regularization with initial data consisting of an arbitrary mollification of the Riemann data. As we show, for this case, the Leray regularization captures the correct rarefaction solution of the inviscid Burgers equation. Additionally, we prove the existence and uniqueness of solutions of the Leray-regularized equation for a large class of discontinuous initial data. All of our results make extensive use of a reformulation of the Leray-regularized equation in the Lagrangian reference frame. The results indicate that the regularization works by bending the characteristics of the inviscid Burgers equation and thereby preventing their finite-time crossing.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 246, Issue 10, 15 May 2009, Pages 3957-3979