کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612631 1338699 2009 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Instability of standing wave, global existence and blowup for the Klein–Gordon–Zakharov system with different-degree nonlinearities
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Instability of standing wave, global existence and blowup for the Klein–Gordon–Zakharov system with different-degree nonlinearities
چکیده انگلیسی

This paper discusses the Klein–Gordon–Zakharov system with different-degree nonlinearities in two and three space dimensions. Firstly, we prove the existence of standing wave with ground state by applying an intricate variational argument. Next, by introducing an auxiliary functional and an equivalent minimization problem, we obtain two invariant manifolds under the solution flow generated by the Cauchy problem to the aforementioned Klein–Gordon–Zakharov system. Furthermore, by constructing a type of constrained variational problem, utilizing the above two invariant manifolds as well as applying potential well argument and concavity method, we derive a sharp threshold for global existence and blowup. Then, combining the above results, we obtain two conclusions of how small the initial data are for the solution to exist globally by using dilation transformation. Finally, we prove a modified instability of standing wave to the system under study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 246, Issue 10, 15 May 2009, Pages 4097-4128