کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612652 1338700 2006 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hair-triggered instability of radial steady states, spread and extinction in semilinear heat equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Hair-triggered instability of radial steady states, spread and extinction in semilinear heat equations
چکیده انگلیسی

We first study the initial value problem for a general semilinear heat equation. We prove that every bounded nonconstant radial steady state is unstable if the spatial dimension is low (n⩽10) or if the steady state is flat enough at infinity: the solution of the heat equation either becomes unbounded as t approaches the lifespan, or eventually stays above or below another bounded radial steady state, depending on if the initial value is above or below the first steady state; moreover, the second steady state must be a constant if n⩽10.Using this instability result, we then prove that every nonconstant radial steady state of the generalized Fisher equation is a hair-trigger for two kinds of dynamical behavior: extinction and spreading. We also prove more criteria on initial values for these types of behavior. Similar results for a reaction–diffusion system modeling an isothermal autocatalytic chemical reaction are also obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 231, Issue 1, 1 December 2006, Pages 235-251