کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612724 1338704 2009 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Invariant manifolds of admissible classes for semi-linear evolution equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Invariant manifolds of admissible classes for semi-linear evolution equations
چکیده انگلیسی

Consider an evolution family U=(U(t,s))t⩾s⩾0 on a half-line R+ and a semi-linear integral equation . We prove the existence of invariant manifolds of this equation. These manifolds are constituted by trajectories of the solutions belonging to admissible function spaces which contain wide classes of function spaces like function spaces of Lp type, the Lorentz spaces Lp,q and many other function spaces occurring in interpolation theory. The existence of such manifolds is obtained in the case that (U(t,s))t⩾s⩾0 has an exponential dichotomy and the nonlinear forcing term f(t,x) satisfies the non-uniform Lipschitz conditions: ‖f(t,x1)−f(t,x2)‖⩽φ(t)‖x1−x2‖ for φ being a real and positive function which belongs to certain classes of admissible function spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 246, Issue 5, 1 March 2009, Pages 1820-1844