کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612743 1338705 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solving the hypergeometric system of Okubo type in terms of a certain generalized hypergeometric function
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Solving the hypergeometric system of Okubo type in terms of a certain generalized hypergeometric function
چکیده انگلیسی

We introduce one scalar function f of a complex variable and finitely many parameters, which allows to represent all solutions of the so-called hypergeometric system of Okubo type under the assumption that one of the two coefficient matrices has all distinct eigenvalues. In the simplest non-trivial situation, f is equal to the hypergeometric function, while in other more complicated cases it is related, but not equal, to the generalized hypergeometric functions. In general, however, this function appears to be a new higher transcendental one. The coefficients of the power series of f about the origin can be explicitly given in terms of a generalized version of the classical Pochhammer symbol, involving two square matrices that in general do not commute. The function can also be characterized by a Volterra integral equation, whose kernel is expressed in terms of the solutions of another hypergeometric system of lower dimension.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 247, Issue 9, 1 November 2009, Pages 2485-2494