کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612761 1338706 2009 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamics of a neutral delay equation for an insect population with long larval and short adult phases
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Dynamics of a neutral delay equation for an insect population with long larval and short adult phases
چکیده انگلیسی

We present a global study on the stability of the equilibria in a nonlinear autonomous neutral delay differential population model formulated by Bocharov and Hadeler. This model may be suitable for describing the intriguing dynamics of an insect population with long larval and short adult phases such as the periodical cicada. We circumvent the usual difficulties associated with the study of the stability of a nonlinear neutral delay differential model by transforming it to an appropriate non-neutral nonautonomous delay differential equation with unbounded delay. In the case that no juveniles give birth, we establish the positivity and boundedness of solutions by ad hoc methods and global stability of the extinction and positive equilibria by the method of iteration. We also show that if the time adjusted instantaneous birth rate at the time of maturation is greater than 1, then the population will grow without bound, regardless of the population death process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 246, Issue 12, 15 June 2009, Pages 4653-4669