کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612774 1338707 2006 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quasineutral limit of a time-dependent drift–diffusion–Poisson model for p-n junction semiconductor devices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Quasineutral limit of a time-dependent drift–diffusion–Poisson model for p-n junction semiconductor devices
چکیده انگلیسی

In this paper the vanishing Debye length limit of the bipolar time-dependent drift–diffusion–Poisson equations modelling insulated semiconductor devices with p-n junctions (i.e., with a fixed bipolar background charge) is studied. For sign-changing and smooth doping profile with ‘good’ boundary conditions the quasineutral limit (zero-Debye-length limit) is performed rigorously by using the multiple scaling asymptotic expansions of a singular perturbation analysis and the carefully performed classical energy methods. The key point in the proof is to introduce a ‘density’ transform and two λ-weighted Liapunov-type functionals first, and then to establish the entropy production integration inequality, which yields the uniform estimate with respect to the scaled Debye length. The basic point of the idea involved here is to control strong nonlinear oscillation by the interaction between the entropy and the entropy dissipation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 225, Issue 2, 15 June 2006, Pages 411-439