کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4612809 | 1338709 | 2009 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Principal Poincaré–Pontryagin function associated to polynomial perturbations of a product of (d+1) straight lines
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we study small polynomial perturbations of a Hamiltonian vector field with Hamiltonian F formed by a product of (d+1) real linear functions in two variables. We assume that the corresponding lines are in a general position in R2. That is, the lines are distinct, non-parallel, no three of them have a common point and all critical values not corresponding to intersections of lines are distinct. We prove in this paper that the principal Poincaré–Pontryagin function Mk(t), associated to such a perturbation and to any family of ovals surrounding a singular point of center type, belongs to the C[t,1/t]-module generated by Abelian integrals and some integrals , with 1⩽i
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 246, Issue 4, 15 February 2009, Pages 1313-1341
Journal: Journal of Differential Equations - Volume 246, Issue 4, 15 February 2009, Pages 1313-1341