کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612857 1338711 2009 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A definition of spectrum for differential equations on finite time
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
A definition of spectrum for differential equations on finite time
چکیده انگلیسی

Hyperbolicity of an autonomous rest point is characterised by its linearization not having eigenvalues on the imaginary axis. More generally, hyperbolicity of any solution which exists for all times can be defined by means of Lyapunov exponents or exponential dichotomies. We go one step further and introduce a meaningful notion of hyperbolicity for linear systems which are defined for finite time only, i.e. on a compact time interval. Hyperbolicity now describes the transient dynamics on that interval. In this framework, we provide a definition of finite-time spectrum, study its relations with classical concepts, and prove an analogue of the Sacker–Sell spectral theorem: For a d-dimensional system the spectrum is non-empty and consists of at most d disjoint (and often compact) intervals. An example illustrates that the corresponding spectral manifolds may not be unique, which in turn leads to several challenging questions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 246, Issue 3, 1 February 2009, Pages 1098-1118