کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4612932 | 1338715 | 2009 | 25 صفحه PDF | دانلود رایگان |

We consider the Cauchy problem for a semilinear heat equation with power nonlinearity. It is known that the equation has a singular steady state in some parameter range. Our concern is a solution with a moving singularity that is obtained by perturbing the singular steady state. By formal expansion, it turns out that the remainder term must satisfy a certain parabolic equation with inverse-square potential. From the well-posedness of this equation, we see that there appears a critical exponent. Paying attention to this exponent, for a prescribed motion of the singular point and suitable initial data, we establish the time-local existence, uniqueness and comparison principle for such singular solutions. We also consider solutions with multiple singularities.
Journal: Journal of Differential Equations - Volume 246, Issue 2, 15 January 2009, Pages 724-748