کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4612960 | 1338717 | 2008 | 25 صفحه PDF | دانلود رایگان |

This paper is addressed to some questions concerning the exponential stability and its robustness measure for linear time-varying differential-algebraic systems of index 1. First, the Bohl exponent theory that is well known for ordinary differential equations is extended to differential-algebraic equations. Then, it is investigated that how the Bohl exponent and the stability radii with respect to dynamic perturbations for a differential-algebraic system depend on the system data. The paper can be considered as a continued and complementary part to a recent paper on stability radii for time-varying differential-algebraic equations [N.H. Du, V.H. Linh, Stability radii for linear time-varying differential-algebraic equations with respect to dynamic perturbations, J. Differential Equations 230 (2006) 579–599].
Journal: Journal of Differential Equations - Volume 245, Issue 8, 15 October 2008, Pages 2078-2102