کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612974 1338718 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniqueness in the Freedericksz transition with weak anchoring
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Uniqueness in the Freedericksz transition with weak anchoring
چکیده انگلیسی

In this paper we consider a boundary value problem for a quasi-linear pendulum equation with non-linear boundary conditions that arises in a classical liquid crystals setup, the Freedericksz transition, which is the simplest opto-electronic switch, the result of competition between reorienting effects of an applied electric field and the anchoring to the bounding surfaces. A change of variables transforms the problem into the equation xττ=−f(x) for τ∈(−T,T), with boundary conditions at τ=∓T, for a convex non-linearity f. By analysing an associated inviscid Burgers' equation, we prove uniqueness of monotone solutions in the original non-linear boundary value problem.This result has been for many years conjectured in the liquid crystals literature, e.g. in [E.G. Virga, Variational Theories for Liquid Crystals, Appl. Math. Math. Comput., vol. 8, Chapman & Hall, London, 1994] and in [I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction, Taylor & Francis, London, 2003].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 246, Issue 7, 1 April 2009, Pages 2590-2600