کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4612980 | 1338718 | 2009 | 38 صفحه PDF | دانلود رایگان |

Let be a family of elliptic differential operators with unbounded coefficients defined in RN+1. In [M. Kunze, L. Lorenzi, A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., in press], under suitable assumptions, it has been proved that the operator G:=A−Ds generates a semigroup of positive contractions (Tp(t)) in Lp(RN+1,ν) for every 1⩽p<+∞, where ν is an infinitesimally invariant measure of (Tp(t)). Here, under some additional conditions on the growth of the coefficients of A, which cover also some growths with an exponential rate at ∞, we provide two different cores for the infinitesimal generator Gp of (Tp(t)) in Lp(RN+1,ν) for p∈[1,+∞), and we also give a partial characterization of D(Gp). Finally, we extend the results so far obtained to the case when the coefficients of the operator A are T-periodic with respect to the variable s for some T>0.
Journal: Journal of Differential Equations - Volume 246, Issue 7, 1 April 2009, Pages 2724-2761