کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612985 1338718 2009 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence and non-existence of solutions for a class of Monge–Ampère equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Existence and non-existence of solutions for a class of Monge–Ampère equations
چکیده انگلیسی

We study the boundary value problems for Monge–Ampère equations: detD2u=e−u in Ω⊂Rn, n⩾1, u|∂Ω=0. First we prove that any solution on the ball is radially symmetric by the argument of moving plane. Then we show there exists a critical radius such that if the radius of a ball is smaller than this critical value there exists a solution, and vice versa. Using the comparison between domains we can prove that this phenomenon occurs for every domain. Finally we consider an equivalent problem with a parameter detD2u=e−tu in Ω, u|∂Ω=0, t⩾0. By using Lyapunov–Schmidt reduction method we get the local structure of the solutions near a degenerate point; by Leray–Schauder degree theory, a priori estimate and bifurcation theory we get the global structure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 246, Issue 7, 1 April 2009, Pages 2849-2875