کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4612991 1338718 2009 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations
چکیده انگلیسی

We study the fully nonlinear elliptic equationequation(0.1)F(D2u,Du,u,x)=fF(D2u,Du,u,x)=f in a smooth bounded domain Ω, under the assumption that the nonlinearity F is uniformly elliptic and positively homogeneous. Recently, it has been shown that such operators have two principal “half” eigenvalues, and that the corresponding Dirichlet problem possesses solutions, if both of the principal eigenvalues are positive. In this paper, we prove the existence of solutions of the Dirichlet problem if both principal eigenvalues are negative, provided the “second” eigenvalue is positive, and generalize the anti-maximum principle of Clément and Peletier [P. Clément, L.A. Peletier, An anti-maximum principle for second-order elliptic operators, J. Differential Equations 34 (2) (1979) 218–229] to homogeneous, fully nonlinear operators.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 246, Issue 7, 1 April 2009, Pages 2958–2987
نویسندگان
,