کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613023 1338720 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem
چکیده انگلیسی

We deal with the Cauchy problem for a strictly hyperbolic second-order operator with non-regular coefficients in the time variable. It is well-known that the problem is well-posed in L2L2 in case of Lipschitz continuous coefficients and that the log-Lipschitz continuity is the natural threshold for the well-posedness in Sobolev spaces which, in this case, holds with a loss of derivatives. Here, we prove that any intermediate modulus of continuity between the Lipschitz and the log-Lipschitz one leads to an energy estimate with arbitrary small loss of derivatives. We also provide counterexamples to show that the following classification:modulusofcontinuity→lossofderivativesis sharpLipschitz→noloss,intermediate→arbitrarysmallloss,log-Lipschitz→finiteloss.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 221, Issue 1, 1 February 2006, Pages 143–157
نویسندگان
, ,