کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613060 1338722 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
First integrals and normal forms for germs of analytic vector fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
First integrals and normal forms for germs of analytic vector fields
چکیده انگلیسی

For a germ of analytic vector fields, the existence of first integrals, resonance and the convergence of normalization transforming the vector field to a normal form are closely related. In this paper we first provide a link between the number of first integrals and the resonant relations for a quasi-periodic vector field, which generalizes one of the Poincaré's classical results [H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré I and II, Rend. Circ. Mat. Palermo 5 (1891) 161–191; 11 (1897) 193–239] on autonomous systems and Theorem 5 of [Weigu Li, J. Llibre, Xiang Zhang, Local first integrals of differential systems and diffeomorphism, Z. Angew. Math. Phys. 54 (2003) 235–255] on periodic systems. Then in the space of analytic autonomous systems in C2n with exactly n resonances and n functionally independent first integrals, our results are related to the convergence and generic divergence of the normalizations. Lastly for a planar Hamiltonian system it is well known that the system has an isochronous center if and only if it can be linearizable in a neighborhood of the center. Using the Euler–Lagrange equation we provide a new approach to its proof.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 245, Issue 5, 1 September 2008, Pages 1167-1184