کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613223 1338732 2008 79 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Viscous boundary value problems for symmetric systems with variable multiplicities
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Viscous boundary value problems for symmetric systems with variable multiplicities
چکیده انگلیسی

Extending investigations of Métivier and Zumbrun in the hyperbolic case, we treat stability of viscous shock and boundary layers for viscous perturbations of multidimensional hyperbolic systems with characteristics of variable multiplicity, specifically the construction of symmetrizers in the low-frequency regime where variable multiplicity plays a role. At the same time, we extend the boundary-layer theory to “real” or partially parabolic viscosities, Neumann or mixed-type parabolic boundary conditions, and systems with nonconservative form, in addition proving a more fundamental version of the Zumbrun–Serre–Rousset theorem, valid for variable multiplicities, characterizing the limiting hyperbolic system and boundary conditions as a nonsingular limit of a reduced viscous system. The new effects of viscosity are seen to be surprisingly subtle; in particular, viscous coupling of crossing hyperbolic modes may induce a destabilizing effect. We illustrate the theory with applications to magnetohydrodynamics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 244, Issue 2, 15 January 2008, Pages 309-387