کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613473 1631517 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimal periods of semilinear evolution equations with Lipschitz nonlinearity
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Minimal periods of semilinear evolution equations with Lipschitz nonlinearity
چکیده انگلیسی

It is known that any periodic orbit of a Lipschitz ordinary differential equation must have period at least 2π/L, where L is the Lipschitz constant of f. In this paper, we prove a similar result for the semilinear evolution equation du/dt=-Au+f(u): for each α with 0⩽α⩽1/2 there exists a constant Kα such that if L is the Lipschitz constant of f as a map from D(Aα) into H then any periodic orbit has period at least KαL-1/(1-α). As a concrete application we recover a result of Kukavica giving a lower bound on the period for the 2d Navier–Stokes equations with periodic boundary conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 220, Issue 2, 15 January 2006, Pages 396-406