کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4613486 | 1338753 | 2007 | 35 صفحه PDF | دانلود رایگان |

In this paper we examine semilinear and nonlinear Neumann problems with a nonsmooth locally Lipschitz potential function. Using variational methods based on the nonsmooth critical point theory, for the semilinear problem we prove a multiplicity result under conditions of double resonance at higher eigenvalues. Our proof involves a nonsmooth extension of the reduction method due to Castro–Lazer–Thews. The nonlinear problem is driven by the p-Laplacian. So first we make some observations about the beginning of the spectrum of (−Δp,W1,p(Z)). Then we prove an existence and multiplicity result. The existence result permits complete double resonance. The multiplicity result specialized in the semilinear case (i.e. p=2) corresponds to the super-sub quadratic situation.
Journal: Journal of Differential Equations - Volume 232, Issue 1, 1 January 2007, Pages 1-35