کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613518 1338758 2006 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws
چکیده انگلیسی

The aim of this paper is to analyze contractivity properties of Wasserstein-type metrics for one-dimensional scalar conservation laws with nonnegative, L∞ and compactly supported initial data and its implications on the long time asymptotics. The flux is assumed to be convex and without any growth condition at the zero state. We propose a time-parameterized family of functions as intermediate asymptotics and prove the solutions, after a time-depending scaling, converge toward this family in the d∞-Wasserstein metric. This asymptotic behavior relies on the aforementioned contraction property for conservation laws in the space of probability densities metrized with the d∞-Wasserstein distance. Finally, we also give asymptotic profiles for initial data whose distributional derivative is a probability measure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 231, Issue 2, 15 December 2006, Pages 425-458