کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613547 1338759 2007 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extension of the Leray–Schauder degree for abstract Hammerstein type mappings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Extension of the Leray–Schauder degree for abstract Hammerstein type mappings
چکیده انگلیسی

We introduce a new extension of the classical Leray–Schauder topological degree in a real separable reflexive Banach space. The new class of mappings for which the degree will be constructed is obtained essentially by replacing the compact perturbation by a composition of mappings of monotone type. It turns out that the class contains the Leray–Schauder type maps as a proper subclass. The new class is not convex thus preventing the free application of affine homotopies. However, there exists a large class of admissible homotopies including subclass of affine ones so that the degree can be effectively used. We shall construct the degree and prove that it is unique. We shall generalize the Borsuk theorem of the degree for odd mappings and show that the ‘principle of omitted rays’ remains valid. To illuminate the use of the new degree we shall briefly consider the solvability of abstract Hammerstein type equations and variational inequalities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 234, Issue 1, 1 March 2007, Pages 289-310