کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4613605 1338767 2006 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hyperbolic conservation laws with nonlinear diffusion and nonlinear dispersion
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Hyperbolic conservation laws with nonlinear diffusion and nonlinear dispersion
چکیده انگلیسی

We study scalar conservation laws with nonlinear diffusion and nonlinear dispersion terms (any ℓ⩾1), the flux function f(u) being mth order growth at infinity. It is shown that if ε, δ=δ(ε) tend to 0, then the sequence {uε} of the smooth solutions converges to the unique entropy solution u∈L∞(0,T∗;Lq(R)) to the conservation law ut+f(u)x=0 in . The proof relies on the methods of compensated compactness, Young measures and entropy measure-valued solutions. Some new a priori estimates are carried out. In particular, our result includes the convergence result by Schonbek when b(λ)=λ, ℓ=1 and LeFloch and Natalini when ℓ=1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 228, Issue 1, 1 September 2006, Pages 171-190