کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4613654 | 1338772 | 2006 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The topology of the monodromy map of a second order ODE
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider the following question: given AâSL(2,R), which potentials q for the second order Sturm-Liouville problem have A as its Floquet multiplier? More precisely, define the monodromy map μ taking a potential qâL2([0,2Ï]) to μ(q)=ΦË(2Ï), the lift to the universal cover G=SL(2,R)Ë of SL(2,R) of the fundamental matrix map Φ:[0,2Ï]âSL(2,R),Φ(0)=I,Φâ²(t)=(01q(t)0)Φ(t). Let H be the real infinite-dimensional separable Hilbert space: we present an explicit diffeomorphism Ψ:G0ÃHâH0([0,2Ï]) such that the composition μâΨ is the projection on the first coordinate, where G0 is an explicitly given open subset of G diffeomorphic to R3. The key ingredient is the correspondence between potentials q and the image in the plane of the first row of Φ, parametrized by polar coordinates, which we call the Kepler transform. As an application among others, let C1âL2([0,2Ï]) be the set of potentials q for which the equation âuâ³+qu=0 admits a nonzero periodic solution: C1 is diffeomorphic to the disjoint union of a hyperplane and Cartesian products of the usual cone in R3 with H.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 227, Issue 2, 15 August 2006, Pages 581-597
Journal: Journal of Differential Equations - Volume 227, Issue 2, 15 August 2006, Pages 581-597
نویسندگان
Dan Burghelea, Nicolau C. Saldanha, Carlos Tomei,