کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4613657 | 1338772 | 2006 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Growup of solutions for a semilinear heat equation with supercritical nonlinearity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider a Cauchy problem for a semilinear heat equationequation(P){ut=Δu+upinRN×(0,∞),u(x,0)=u0(x)⩾0inRN. Let v∞v∞ be the radially symmetric singular steady state of (P). It is proved that if p>N−2N−1N−4−2N−1 and N⩾11N⩾11, then for each nonnegative even integer n there exists a radially symmetric global solution unun of (P) with n intersections with v∞v∞ such that t−an|un(t)|∞→1t−an|un(t)|∞→1 as t→∞t→∞ for some an>0an>0 depending on n . The exact value of anan is also given. We show that a0a0 is the optimal upper bound of growup rate for solutions below v∞v∞.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 227, Issue 2, 15 August 2006, Pages 652–669
Journal: Journal of Differential Equations - Volume 227, Issue 2, 15 August 2006, Pages 652–669
نویسندگان
Noriko Mizoguchi,