کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
462106 696672 2008 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Traffic-aware stress testing of distributed real-time systems based on UML models using genetic algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Traffic-aware stress testing of distributed real-time systems based on UML models using genetic algorithms
چکیده انگلیسی

This paper presents a model-driven, stress test methodology aimed at increasing chances of discovering faults related to network traffic in distributed real-time systems (DRTS). The technique uses the UML 2.0 model of the distributed system under test, augmented with timing information, and is based on an analysis of the control flow in sequence diagrams. It yields stress test requirements that are made of specific control flow paths along with time values indicating when to trigger them. The technique considers different types of arrival patterns (e.g., periodic) for real-time events (common to DRTSs), and generates test requirements which comply with such timing constraints. Though different variants of our stress testing technique already exist (that stress different aspects of a distributed system), they share a large amount of common concepts and we therefore focus here on one variant that is designed to stress test the system at a time instant when data traffic on a network is maximal. Our technique uses genetic algorithms to find test requirements which lead to maximum possible traffic-aware stress in a system under test. Using a real-world DRTS specification, we design and implement a prototype DRTS and describe, for that particular system, how the stress test cases are derived and executed using our methodology. The stress test results indicate that the technique is significantly more effective at detecting network traffic-related faults when compared to test cases based on an operational profile.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Systems and Software - Volume 81, Issue 2, February 2008, Pages 161–185
نویسندگان
, , ,