کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4624650 1631631 2015 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Bailey transform and Hecke–Rogers identities for the universal mock theta functions
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
The Bailey transform and Hecke–Rogers identities for the universal mock theta functions
چکیده انگلیسی

Recently, Garvan obtained two-variable Hecke–Rogers identities for three universal mock theta functions g2(z;q)g2(z;q), g3(z;q)g3(z;q), K(z;q)K(z;q) by using basic hypergeometric functions, and he proposed a problem of finding direct proofs of these identities by using Bailey pair technology. In this paper, we give proofs of Garvan's identities by applying Bailey's transform with the conjugate Bailey pair of Warnaar and three Bailey pairs deduced from two special cases of ψ66 given by Slater. In particular, we obtain a compact form of two-variable Hecke–Rogers identity related to g3(z;q)g3(z;q), which implies the corresponding identity given by Garvan. We also extend these two-variable Hecke–Rogers identities into infinite families.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 65, April 2015, Pages 65–86
نویسندگان
, ,