کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4624656 | 1631635 | 2014 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Rook endgame problems in m by n Chess
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider Chess played on an m×nm×n board (with m and n arbitrary positive integers), with only the two Kings and the White Rook remaining, but placed at arbitrary positions. Using the symbolic finite state method, developed by Thanatipanonda and Zeilberger, we prove that on a 3×n3×n board, for almost all initial positions, White can checkmate Black in ≤n+2≤n+2 moves, and that this upper bound is sharp. We also conjecture that for an arbitrary m×nm×n board, with m,n≥4m,n≥4 (except for (m,n)=(4,4)(m,n)=(4,4) when it equals 7), the number of needed moves is ≤m+n≤m+n, and that this bound is also sharp.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 61, October 2014, Pages 19–24
Journal: Advances in Applied Mathematics - Volume 61, October 2014, Pages 19–24
نویسندگان
Thotsaporn “Aek” Thanatipanonda,