کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4624808 1631644 2014 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Infinitely log-monotonic combinatorial sequences
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Infinitely log-monotonic combinatorial sequences
چکیده انگلیسی

We introduce the notion of infinitely log-monotonic sequences. By establishing a connection between completely monotonic functions and infinitely log-monotonic sequences, we show that the sequences of the Bernoulli numbers, the Catalan numbers and the central binomial coefficients are infinitely log-monotonic. In particular, if a sequence {an}n⩾0{an}n⩾0 is log-monotonic of order two, then it is ratio log-concave in the sense that the sequence {an+1/an}n⩾0{an+1/an}n⩾0 is log-concave. Furthermore, we prove that if a sequence {an}n⩾k{an}n⩾k is ratio log-concave, then the sequence {ann}n⩾k is strictly log-concave subject to an initial condition. As consequences, we show that the sequences of the derangement numbers, the Motzkin numbers, the Fine numbers, the central Delannoy numbers, the numbers of tree-like polyhexes and the Domb numbers are ratio log-concave. For the case of the Domb numbers DnDn, we confirm a conjecture of Sun on the log-concavity of the sequence {Dnn}n⩾1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 52, January 2014, Pages 99–120
نویسندگان
, , ,