کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4624821 1340293 2013 121 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians
چکیده انگلیسی

The classic Cayley identity states thatdet(∂)(detX)s=s(s+1)⋯(s+n−1)(detX)s−1det(∂)(detX)s=s(s+1)⋯(s+n−1)(detX)s−1 where X=(xij)X=(xij) is an n×nn×n matrix of indeterminates and ∂=(∂/∂xij)∂=(∂/∂xij) is the corresponding matrix of partial derivatives. In this paper we present straightforward algebraic/combinatorial proofs of a variety of Cayley-type identities, both old and new. The most powerful of these proofs employ Grassmann algebra (= exterior algebra) and Grassmann–Berezin integration. Among the new identities proven here are a pair of “diagonal-parametrized” Cayley identities, a pair of “Laplacian-parametrized” Cayley identities, and the “product-parametrized” and “border-parametrized” rectangular Cayley identities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 50, Issue 4, April 2013, Pages 474–594
نویسندگان
, , ,