کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4624931 | 1340304 | 2010 | 17 صفحه PDF | دانلود رایگان |

We introduce binomial edge ideals attached to a simple graph G and study their algebraic properties. We characterize those graphs for which the quadratic generators form a Gröbner basis in a lexicographic order induced by a vertex labeling. Such graphs are chordal and claw-free. We give a reduced squarefree Gröbner basis for general G. It follows that all binomial edge ideals are radical ideals. Their minimal primes can be characterized by particular subsets of the vertices of G. We provide sufficient conditions for Cohen–Macaulayness for closed and nonclosed graphs.Binomial edge ideals arise naturally in the study of conditional independence ideals. Our results apply for the class of conditional independence ideals where a fixed binary variable is independent of a collection of other variables, given the remaining ones. In this case the primary decomposition has a natural statistical interpretation.
Journal: Advances in Applied Mathematics - Volume 45, Issue 3, September 2010, Pages 317-333