کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4624947 1340305 2011 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups
چکیده انگلیسی

The paper contains a generalization of known properties of Chebyshev polynomials of the second kind in one variable to polynomials of n variables based on the root lattices of compact simple Lie groups G of any type and of any rank n. The results, inspired by work of H. Li and Y. Xu where they derived cubature formulae from A-type lattices, yield Gaussian cubature formulae for each simple Lie group G based on nodes (interpolation points) that arise from regular elements of finite order in G. The polynomials arise from the irreducible characters of G and the nodes as common zeros of certain finite subsets of these characters. The consistent use of Lie theoretical methods reveals the central ideas clearly and allows for a simple uniform development of the subject. Furthermore it points to genuine and perhaps far reaching Lie theoretical connections.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 47, Issue 3, September 2011, Pages 509-535