کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4624962 1340306 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lower bound on the correlation between monotone families in the average case
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Lower bound on the correlation between monotone families in the average case
چکیده انگلیسی

A well-known inequality due to Harris and Kleitman [T.E. Harris, A lower bound for the critical probability in a certain percolation process, Math. Proc. Cambridge Philos. Soc. 56 (1960) 13–20; D.J. Kleitman, Families of non-disjoint subsets, J. Combin. Theory 1 (1966) 153–155] states that any two monotone subsets of n{0,1} are non-negatively correlated with respect to the uniform measure on n{0,1}. In [M. Talagrand, How much are increasing sets positively correlated? Combinatorica 16 (2) (1996) 243–258], Talagrand established a lower bound on the correlation in terms of how much the two sets depend simultaneously on the same coordinates. In this paper we show that when the correlation is averaged over all the pairs A,B∈T for any family T of monotone subsets of n{0,1}, the lower bound asserted in [M. Talagrand, How much are increasing sets positively correlated? Combinatorica 16 (2) (1996) 243–258] can be improved, and more precise estimates on the average correlation can be given. Furthermore, we generalize our results to the correlation between monotone functions on n[0,1] with respect to the Lebesgue measure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 43, Issue 1, July 2009, Pages 31-45