کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4624975 | 1340308 | 2012 | 24 صفحه PDF | دانلود رایگان |

For a 2-connected matroid M, Cunningham and Edmonds gave a tree decomposition that displays all of its 2-separations. When M is 3-connected, two 3-separations are equivalent if one can be obtained from the other by passing through a sequence of 3-separations each of which is obtained from its predecessor by moving a single element from one side of the 3-separation to the other. Oxley, Semple, and Whittle gave a tree decomposition that displays, up to this equivalence, all non-trivial 3-separations of M. Now let M be 4-connected. In this paper, we define two 4-separations of M to be 2-equivalent if one can be obtained from the other by passing through a sequence of 4-separations each obtained from its predecessor by moving at most two elements from one side of the 4-separation to the other. The main result of the paper proves that M has a tree decomposition that displays, up to 2-equivalence, all non-trivial 4-separations of M.
Journal: Advances in Applied Mathematics - Volume 48, Issue 1, January 2012, Pages 1-24