کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4625099 1340319 2010 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability of the reverse Blaschke–Santaló inequality for zonoids and applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Stability of the reverse Blaschke–Santaló inequality for zonoids and applications
چکیده انگلیسی

An important GL(n) invariant functional of centred (origin symmetric) convex bodies that has received particular attention is the volume product. For a centred convex body A⊂Rn it is defined by P(A):=|A|⋅|A∗|, where |⋅| denotes volume and A∗ is the polar body of A. If A is a centred zonoid, then it is known that P(A)⩾P(Cn), where Cn is a centred affine cube, i.e. a Minkowski sum of n linearly independent centred segments. Equality holds in the class of centred zonoids if and only if A is a centred affine cube. Here we sharpen this uniqueness statement in terms of a stability result by showing in a quantitative form that the Banach–Mazur distance of a centred zonoid A from a centred affine cube is small if P(A) is close to P(Cn). This result is then applied to strengthen a uniqueness result in stochastic geometry.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 44, Issue 4, May 2010, Pages 309-328